organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-3-nitrobenzonitrile

Bo-Nian Liu,^a Shi-Gui Tang,^b Hao-Yuan Li^a and Cheng Guo^a*

^aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and ^bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Received 4 December 2008; accepted 7 December 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; R factor = 0.073; wR factor = 0.182; data-to-parameter ratio = 13.8.

In the title compound, C₇H₃ClN₂O₂, the Cl, C and N atoms are coplanar with the aromatic ring. In the crystal structure, weak intermolecular $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds link the molecules. The π - π contact between the benzene rings, [centroid–centroid distances = 3.912(3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Sun & Wang (2006). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data C7H3ClN2O2 $M_r = 182.56$

Triclinic, $P\overline{1}$ a = 7.2260 (14) Å

b = 7.7610 (16) Å	Z = 2
c = 7.7970 (16) Å	Mo $K\alpha$ radiation
$\alpha = 110.27 (3)^{\circ}$	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 91.86 \ (3)^{\circ}$	T = 294 (2) K
$\gamma = 107.22$ (3)°	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 387.32 (18) Å ³	
Data collection	
Enraf–Nonius CAD-4	1418 independent reflections
diffractometer	1000 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.052$
(North et al., 1968)	3 standard reflections
$T_{\rm min} = 0.878, T_{\rm max} = 0.957$	frequency: 120 min
1540 measured reflections	intensity decay: none
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.073$	103 parameters
$wR(F^2) = 0.182$	H-atom parameters constraine
S = 1.00	$\Delta \rho_{mm} = 0.27 \text{ e} \text{ Å}^{-3}$
5 1.00	<u> </u>

ained $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 1418 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2A \cdots O1^{i}$	0.93	2.48	3.288 (7)	145
C5 - H5A \cdots N2^{ii}	0.93	2.61	3.497 (7)	159

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 1, -z + 2.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2597).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124-125.

supplementary materials

Acta Cryst. (2009). E65, o92 [doi:10.1107/S1600536808041330]

4-Chloro-3-nitrobenzonitrile

B.-N. Liu, S.-G. Tang, H.-Y. Li and C. Guo

Comment

Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, C7, N1 and N2 are -0.040 (3), -0.049 (3), 0.005 (3) and 0.036 (3) Å away from the plane of the benzene ring.

In the crystal structure, weak intermolecular C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contact between the benzene rings, Cg1—Cg1ⁱ [symmetry code: (i) 1 - x, 1 - y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.912 (3) Å.

Experimental

For the preparation of the title compound, 4-chloro-3-nitrobenzamide (33.9 g, 0.17 mol) was suspended in phosphorus oxychloride (150 ml). The temperature was controlled at 333 K for 6 h, and then it was put into ice water (500 ml). It was filtered and the colorless precipitate was washed (yield; 28.2 g) (Sun *et al.*, 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Z = 2

 $F_{000} = 184$

 $D_{\rm x} = 1.565 {\rm Mg m}^{-3}$

Cell parameters from 25 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$

 $\mu = 0.45 \text{ mm}^{-1}$

T = 294 (2) K

Block, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\theta = 9 - 12^{\circ}$

4-Chloro-3-nitrobenzonitrile

Crystal data $C_7H_3CIN_2O_2$ $M_r = 182.56$ Triclinic, *P*T Hall symbol: -P 1 a = 7.2260 (14) Å b = 7.7610 (16) Å c = 7.7970 (16) Å $\alpha = 110.27 (3)^{\circ}$ $\beta = 91.86 (3)^{\circ}$ $\gamma = 107.22 (3)^{\circ}$ $V = 387.32 (18) \text{ Å}^3$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.052$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.8^{\circ}$
T = 294(2) K	$h = -8 \rightarrow 8$
$\omega/2\theta$ scans	$k = -9 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 9$
$T_{\min} = 0.878, T_{\max} = 0.957$	3 standard reflections
1540 measured reflections	every 120 min
1418 independent reflections	intensity decay: none
1000 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map			
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites			
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained			
$wR(F^2) = 0.182$	$w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 0.880P]$ where $P = (F_o^2 + 2F_c^2)/3$			
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$			
1418 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$			
103 parameters	$\Delta \rho_{\rm min} = -0.33 \ e \ {\rm \AA}^{-3}$			
Primary atom site location: structure-invariant direct	Extinction correction: none			

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl	0.08801 (17)	0.32257 (19)	0.5711 (2)	0.0767 (5)
01	0.3498 (8)	0.0413 (6)	0.7577 (7)	0.1159 (19)
O2	0.2991 (5)	0.0203 (5)	0.4775 (6)	0.0819 (12)
N1	0.3567 (5)	0.1130 (5)	0.6413 (6)	0.0590 (10)
N2	1.0736 (7)	0.7724 (7)	1.0090 (8)	0.0942 (17)
C1	0.6103 (7)	0.7170 (6)	0.8157 (7)	0.0652 (12)
H1A	0.6681	0.8512	0.8556	0.077*
C2	0.4139 (6)	0.6306 (6)	0.7290 (7)	0.0602 (12)
H2A	0.3418	0.7057	0.7106	0.072*
C3	0.3307 (6)	0.4305 (6)	0.6717 (6)	0.0560 (12)
C4	0.4384 (6)	0.3252 (6)	0.7025 (6)	0.0502 (11)
C5	0.6290 (6)	0.4094 (6)	0.7883 (6)	0.0581 (12)
H5A	0.7001	0.3352	0.8108	0.070*
C6	0.7137 (6)	0.6118 (6)	0.8413 (6)	0.0478 (10)
C7	0.9133 (7)	0.7033 (7)	0.9310 (8)	0.0718 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cl	0.0388 (6)	0.0651 (8)	0.1075 (11)	0.0117 (5)	0.0161 (6)	0.0143 (7)	
01	0.187 (5)	0.048 (2)	0.111 (4)	0.028 (3)	0.076 (3)	0.031 (2)	
02	0.064 (2)	0.047 (2)	0.098 (3)	0.0060 (16)	0.015 (2)	-0.007 (2)	
N1	0.046 (2)	0.038 (2)	0.078 (3)	0.0103 (16)	0.027 (2)	0.005 (2)	
N2	0.059 (3)	0.068 (3)	0.110 (4)	-0.004 (2)	-0.001 (3)	-0.001 (3)	
C1	0.062 (2)	0.034 (3)	0.078 (3)	0.005 (2)	0.031 (2)	0.004 (2)	
C2	0.046 (2)	0.048 (3)	0.079 (3)	0.018 (2)	0.022 (2)	0.011 (2)	
C3	0.037 (2)	0.047 (2)	0.068 (3)	0.0102 (19)	0.027 (2)	0.003 (2)	
C4	0.044 (2)	0.032 (2)	0.065 (3)	0.0098 (17)	0.033 (2)	0.0069 (19)	
C5	0.043 (2)	0.042 (2)	0.071 (3)	0.0143 (19)	0.020 (2)	-0.001 (2)	
C6	0.047 (2)	0.039 (2)	0.053 (2)	0.0128 (18)	0.0204 (19)	0.0112 (18)	
C7	0.050 (3)	0.048 (3)	0.088 (4)	0.004 (2)	0.016 (3)	0.001 (3)	
Geometric pa	arameters (Å, °)						
Cl—C3		1.726 (4)	C4—	·C3	1.3	54 (6)	
N101		1.213 (6)	C4—	C4—C5		1.370 (6)	
N1—O2		1.214 (5)	С5—	C5—C6		1.406 (6)	
С1—Н1А		0.9300	С5—Н5А		0.9300		
C2—C1		1.407 (7)	C6—C1		1.316 (6)		
C2—C3		1.386 (6)	C6—C7		1.434 (7)		
C2—H2A		0.9300	C7—N2		1.166 (6)		
C4—N1		1.466 (5)					
01—N1—02		124.2 (4)	C2—	-C3—Cl	118	.9 (4)	
01—N1—C4		117.9 (4)	C4—C3—Cl		121.5 (3)		
O2—N1—C4		117.9 (4)	C4—C3—C2		119.5 (4)		
С1—С2—Н2	A	120.9	C3—C4—N1		121.1 (4)		
C1—C6—C5		120.8 (4)	C3—C4—C5		122.2 (4)		
C1—C6—C7		120.3 (4)	C5—C4—N1		116.6 (4)		
C2-C1-H1	A	119.4	C4—C5—C6		117.8 (4)		
C6—C1—C2		121.3 (4)	C4—C5—H5A		121.1		
C6-C1-H1	А	119.4	C6—C5—H5A		121.1		
C3—C2—C1		118.3 (4)	C5—C6—C7		118.8 (4)		
С3—С2—Н2	А	120.9	N2—	N2C7C6		176.8 (6)	
C3—C2—C1-	—C6	0.4 (7)	С5—	-C4—C3—Cl	-17	7.5 (4)	
C1—C2—C3—C4		0.9 (7)	N1—C4—C3—C1		3.8 (6)		
C1—C2—C3—C1		178.2 (4)	C3—C4—C5—C6		-1.4 (7)		
C3—C4—N1—O1		-120.7 (5)	N1—C4—C5—C6		177.3 (4)		
C5-C4-N1-O1		60.6 (6)	C4—C5—C6—C1		2.6 (7)		
C3—C4—N1	—O2	58.9 (5)	C4—	C5—C6—C7	-17	-179.8 (4)	
C5-C4-N1	—O2	-119.8 (5)	C5—	C6—C1—C2	-2.	1 (7)	
C5—C4—C3-	—C2	-0.3 (7)	С7—	C6—C1—C2	-17	9.6 (5)	
N1—C4—C3—C2		-179.0 (4)					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A	
C2—H2A····O1 ⁱ	0.93	2.48	3.288 (7)	145	
C5—H5A····N2 ⁱⁱ	0.93	2.61	3.497 (7)	159	
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+2, -y+1, -z+2$.					

